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Abstract: There is evidence that vaccination against seasonal influenza can improve innate immune 

responses to COVID-19 and decrease disease severity. However, less is known about whether it 

could also impact the humoral immunity in SARS-CoV-2 infected patients. The present study aimed 

to compare the SARS-CoV-2 specific humoral responses (IgG antibodies against nucleocapsid; anti-

N, receptor binding domain; anti-RBD, subunit S2; anti-S2, and envelope protein; anti-E) between 

non-hospitalized, COVID-19 unvaccinated, and mild COVID-19 convalescent patients who were 

and were not vaccinated against influenza during the 2019/2020 epidemic season (n = 489 and n = 

292, respectively). The influenza-vaccinated group had significantly higher frequency and titers of 

anti-N antibodies (75 vs. 66%; mean 559 vs. 520 U/mL) and anti-RBD antibodies (85 vs. 76%; mean 

580 vs. 540 U/mL). The prevalence and concentrations of anti-S2 and anti-E antibodies did not differ 

between groups (40–43%; mean 370–375 U/mL and 1.4–1.7%; mean 261–294 U/mL) and were 

significantly lower compared to those of anti-RBD and anti-N. In both groups, age, comorbidities, 

and gender did not affect the prevalence and concentrations of studied antibodies. The results 

indicate that influenza vaccination can improve serum antibody levels produced in response to 

SARS-CoV-2 infection. 
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1. Introduction 

A broad range of factors can affect the host immune response to viral infection, 

including the pathogen’s immunogenicity, the disease’s clinical course, human age, sex, 

and health status [1–3]. During the pandemic of coronavirus disease 2019 (COVID-19), 

increasing attention has been given to the cross-protective effects of different vaccinations. 

As demonstrated by selected epidemiological studies, individuals vaccinated against 

influenza had lower odds of SARS-CoV-2 infection, hospitalization, need for mechanical 

ventilation, and death due to COVID-19 [4–6]. The data also demonstrate that the bacillus 

Calmette−Guérin (BCG) vaccine against tuberculosis can confer protection against other 

infectious diseases, including influenza staphylococci and yellow fever [7–9]. This 

phenomenon has been attributed to the so-called “trained immunity”, a process of 

epigenetic reprogramming of transcriptional pathways induced by infections and 

vaccinations that ultimately allows the innate immune system to exhibit adaptive 

characteristics [10,11]. 
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However, there is also initial evidence that previous vaccinations against other 

respiratory diseases could improve the humoral response to the COVID-19 vaccine. In one 

study, individuals receiving concomitant influenza and pneumococcal or only influenza 

vaccination revealed significantly increased micro-neutralization titers after 

administration of the BNT162b2 vaccine (BioNTech/Pfizer, Germany, Mainz/New York, 

NY, USA) compared to those not vaccinated against influenza/pneumococcal disease [12]. 

Another study recently confirmed this finding, demonstrating higher titers of antibodies 

against the SARS-CoV-2 receptor binding domain following BNT162b2 vaccination in 

healthcare workers who previously received the seasonal influenza vaccine [13]. The exact 

molecular mechanisms behind this effect are yet to be elucidated. 

The first investigations of the humoral response to hemagglutinins of the influenza 

virus during the COVID-19 pandemic [14] provided the passage for further studies 

evaluating whether vaccination against seasonal influenza could also impact the humoral 

immunity in SARS-CoV-2 infected patients is less known. Therefore, the present study 

aimed to compare the SARS-CoV-2 specific humoral responses between non-hospitalized, 

COVID-19 unvaccinated, and mild COVID-19 convalescent patients who were and were 

not previously vaccinated against influenza during the 2019/2020 epidemic season. To this 

end, the prevalence and concentrations of four IgG antibodies specific to SARS-CoV-2 

were evaluated in both groups. 

2. Materials and Methods 

2.1. Patients and Serum Samples 

All serum samples were purchased in 2020 from the Regional Blood Donation and 

Blood Treatment Centers in Poland from units located in 8 voivodeships in the following 

cities: Białystok, Warsaw, Radom, Racibórz, Kalisz, Bydgoszcz, Łódź, Szczecin, and 

Wrocław. All samples were collected between September and December 2020 from SARS-

CoV-2 infected patients (confirmed by RT-PCR) 1 month (+/− 2 weeks) after the resolution 

of symptoms/end of the isolation period. This period was dominated by infections with 

Nextstrain clades 20A, 20B, and 20C [15], which did not reveal major differences in clinical 

outcomes [16,17]. In total, we purchased 659 serum samples from individuals vaccinated 

against influenza during 2019/2020 epidemic season and 659 serum samples from 

unvaccinated persons. All influenza-vaccinated individuals received the vaccine in the 

recommended period between September and December 2019, approximately one year 

prior to infection with SARS-CoV-2. The patient’s age, gender, comorbidities (present or 

not), and COVID-19 severity were collected for all samples. The frozen samples were 

transported frozen to the Department of Influenza Research, National Influenza Centre in 

National Institute of Public Health—National Research Institute. The research project was 

approved by the Bioethical Committee of the Institute of Public Health—National 

Research Institute (approval no. 4/2020; date of approval: 6 August 2020) and the Bioethics 

Committee at Poznan University of Medical Sciences (approval no. 429/22; date of 

approval: 11 May 2022). Considering that severity of SARS-CoV-2 infection can 

significantly influence the humoral responses [18,19], individuals who underwent mild 

COVID-19, not requiring hospitalization, were selected for this analysis. In total, 781 sera 

samples were analyzed, with 292 originating from individuals not vaccinated against 

influenza and 489 from those vaccinated in the 2019/2020 epidemic season. As the samples 

originated from 2020, all individuals were not vaccinated against COVID-19. 

2.2. Determination of Anti-SARS-CoV-2-Specific IgG Antibodies 

The collected serum samples were tested using the CE-IVD certified Microblot-Array 

COVID-19 IgG assay (TestLine Clinical Diagnostics, Brno, Czech Republic) for the 

presence and titer of the specific SARS-CoV-2 IgG antibodies against the receptor binding 

domain of the spike protein (anti-RBD), S2 subunit of the spike protein (anti-S2), 

nucleocapsid protein (anti-N), and envelope protein (anti-E). In this assay, recombinant 
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and purified native antigens are immobilized on specific spots of nitrocellulose membrane 

fixed at the bottom of the microplate well [20]. The concentrations for all four antibodies 

were given as U/mL and interpreted as positive if above 210 U/mL. 

2.3. Statistical Analyses 

Data were analyzed with Statistica v.13.3 (StatSoft Inc., Tulsa, OK, USA). Because no 

assumption of Gaussian distribution was met (Shapiro–Wilk’s test, p < 0.05), a non-

parametric Mann–Whitney U test was employed to compare groups vaccinated and 

unvaccinated against influenza. Comparison of titers of different antibodies was 

performed with Kruskal–Wallis ANOVA using Dunn’s test as a post hoc method. 

Spearman’s rank coefficient was used to assess the relationship between concentrations 

of different antibodies. The prevalence of antibodies in influenza vaccinated and 

unvaccinated were compared with Pearson’s χ2 test. When p < 0.05, differences were 

deemed statistically significant. 

3. Results 

3.1. Demographic Characteristics 

Serum samples collected from 781 mild COVID-19 convalescent patients were 

analyzed, among whom 62.6% were vaccinated against influenza in the 2019/2020 

infection season. Groups of patients vaccinated and unvaccinated against influenza did 

not differ in age and gender, but the former was represented by a higher frequency of 

comorbidities (Table 1). 

Table 1. The demographic characteristics of the studied groups of COVID-19 convalescent patients. 

Parameter 
Unvaccinated against 

Influenza (n = 292) 

Vaccinated against 

Influenza (n = 489) 
p-Value 

Age (years), mean ± SD 35.8 ± 8.5 37.0 ± 10.3 >0.05 

≥ 50 years, % (n) 5.1 (15) 11.9 (58) 0.002 

Women/men, % (n) 17.1 (50)/82.9 (242) 23.3 (114)/76.7 (375) >0.05 

Comorbidities, % (n) 1.7 (5) 5.1 (25) 0.02 

3.2. Prevalence of SARS-CoV-2-Specific IgG Antibodies 

The prevalence of anti-N, anti-RBD, anti-S2, and anti-E IgG antibodies in the studied 

cohort was 71.3, 81.6, 41.7, and 1.5%, respectively (Table 2). In general, 12.7% had 

undetectable levels of any of the considered antibodies, 15.7% tested positive for one, 

35.7% for two, 34.4% for three, and 1.4% for all four. Group vaccinated against influenza 

in the 2019/2020 season revealed a higher prevalence of anti-N (by 8.8%) and anti-RBD (by 

8.4%) antibodies compared to those who did not receive such vaccination (Table 2). In 

both groups, the prevalence of any antibody was not differentiated by age ≥ 50 years, 

comorbidities (p > 0.05 in all cases, Pearson’s χ2 test), or between women and men (p > 0.05 

in all cases, Mann–Whitney U test). 
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Table 2. The frequencies (%) of IgG antibodies against SARS-CoV-2 nucleocapsid protein (anti-N), 

receptor binding domain of spike protein (anti-RBD), subunit S2 of spike protein (anti-S2), and 

envelope protein (anti-E) in mild COVID-19 convalescent individuals not vaccinated and vaccinated 

against seasonal influenza. The p-value refers to difference between these groups examined with 

Pearson’s χ2 test. 

IgG 

Antibodies 

Unvaccinated against 

influenza (n = 292) 

Vaccinated against 

influenza (n = 489) 
p-Value 

Total  

(n = 489) 

anti-N 65.8 74.6 0.008 71.3 

anti-RBD 76.7 85.1 0.001 81.6 

anti-S2 39.7 42.9 >0.05 41.7 

anti-E 1.7 1.4 >0.05 1.5 

3.3. Titers of SARS-CoV-2-Specific IgG Antibodies 

Generally, the serum concentrations of anti-N, anti-RBD, anti-S2, and anti-E IgG 

antibodies (mean ± SD) in all studied patients who tested positive for their presence were 

545.8 ± 212.6, 566.0 ± 217.7, 373.2 ± 165.3, and 280.3 ± 78.8 U/mL, respectively. Group 

vaccinated against seasonal influenza revealed significantly higher concentrations of anti-

N and anti-RBD antibodies than those who did not receive the influenza vaccine; the 

difference in means was 39.5 (7.6%) and 40.0 (7.4%) U/mL, respectively (Figure 1). Within 

both subgroups, titers of anti-N and anti-RBD antibodies were higher than that of anti-S2 

and anti-E (Figure 1). 

 

Figure 1. Serum titers (median and interquartile range) of IgG antibodies against SARS-CoV-2 

nucleocapsid protein (anti-N), receptor binding domain of spike protein (anti-RBD), subunit S2 of 

spike protein (anti-S2), and envelope protein (anti-E) in mild COVID-19 convalescent individuals 

not vaccinated (I-VAX-) and vaccinated (I-VAX+) against seasonal influenza. The p-value refers to 

the difference between these groups examined with the Mann–Whitney U test. Different small 

letters (a, b) above bars indicate a significant difference between antibody concentrations within the 
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I-VAX- group, while different capital letters (A, B) indicate it within the I-VAX+ group (Kruskal–

Wallis ANOVA with Dunn’s post hoc test). 

In both groups, serum concentration of any antibody was not differentiated by age ≥ 

50 years or comorbidities and did not differ between women and men (p > 0.05 in all cases, 

Mann–Whitney U test). The serum concentrations of anti-N were significantly correlated 

with anti-RBD and anti-S2 titers in both groups. Additionally, in individuals vaccinated 

against seasonal influenza, anti-RBD and anti-S2 concentrations were positively 

associated (Table 3). 

Table 3. Relationship (given as Spearman’s rank correlation coefficient) between serum 

concentrations of IgG antibodies against SARS-CoV-2 nucleocapsid protein (anti-N), receptor 

binding domain of spike protein (anti-RBD), subunit S2 of spike protein (anti-S2), and envelope 

protein (anti-E) in mild COVID-19 convalescent individuals not vaccinated and vaccinated against 

seasonal influenza. 

IgG 

Antibodies 

Unvaccinated against Influenza 

(n = 292) 

Vaccinated against Influenza 

(n = 489) 

anti-N anti-RBD anti-S2 anti-E anti-N anti-RBD anti-S2 anti-E 

anti-N - 
0.56 

p < 0.05 

0.24 

p < 0.05 

0.15 

p > 0.05 
- 

0.38 

p < 0.05 

0.21 

p < 0.05 

0.14 

p > 0.05 

anti-RBD - - 
0.19 

p > 0.05 

0.67 

p > 0.05 
- - 

0.38 

p < 0.05 

0.32 

p > 0.05 

anti-S2 - - - 
0.32 

p > 0.05 
- - - 

0.04 

p > 0.05 

anti-E - - - - - - - - 

4. Discussion 

The present study demonstrated some beneficial relationship between seasonal 

influenza vaccination and humoral response in SARS-CoV-2 infection. Individuals who 

received the influenza vaccine during the 2019/2020 epidemic season revealed higher 

frequency and titers of anti-N and anti-RBD IgG antibodies. The increased levels of these 

antibodies can translate into better protection against reinfection or exert neutralization 

effects if the virus still replicates in tissues [21]. Although age, gender, and comorbidities 

were previously observed as potential factors influencing humoral responses in COVID-

19 [22–25], this was not the case in the present cohort of patients who underwent mild 

disease. These findings add to the body of knowledge on the positive effects of influenza 

vaccination in COVID-19 [4–6,26,27]. 

Our results suggest that influenza vaccination may increase the strength of the 

adaptive response to other viral infections. Although the mechanisms behind this 

phenomenon are not known, it can be speculated that vaccination positively affects the 

production of interleukin-4 by T-helper 2 cells, leading to better clonal expansion of B cells 

and/or interleukin-5 and interleukin-6, which contribute to later phases of B-cell activation 

by driving their differentiation and supporting antibody production [28]. Moreover, it is 

suggested that influenza vaccination may induce innate immune training in myeloid cells 

by altering cytokine production through epigenetic changes [29–31]. It is plausible that 

such trained myeloid cells may also support humoral responses during SARS-CoV-2 

infection. Further investigations are required to understand better the exact nature of 

immunological events in play and their role in the cross-protective effects of influenza 

vaccination against heterologous infection. 

Compared to anti-RBD IgG antibodies, anti-N were less prevalent in the studied 

cohort (by 10.3%), as well as in subsets of individuals vaccinated (by 10.5%) and 

unvaccinated (by 10.9%) against seasonal influenza. This is in line with other studies, 

which also reported a lower prevalence of anti-N IgG antibodies compared to anti-RBD 
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[32,33]. This is due to the different dynamics of these antibodies, from which anti-N are 

detected earlier and have a significantly lower half-life [33,34]. Moreover, a lower 

prevalence of anti-N antibodies is likely also due to the location of nucleocapsid protein 

inside the lipid bilayer envelope, which can blunt its recognition by immune cells [35,36]. 

In turn, less than 50% of analyzed serum samples were positive for anti-S2 IgG antibodies. 

Experimental vaccine research revealed that the S2 subunit of SARS-CoV-2 S protein, 

which has distinct domains involved in mediating viral fusion of viral envelope, can be 

similarly immunogenic as S1, which contains RBD and the N-terminal domain [37]. 

However, these observations relate to the immunogenicity comparison of different 

subunit vaccine candidates, whereas in the case of the virion, S2 is much less accessible 

for immune cell recognition and contains a lower number of predicted epitopes than S1 

[38]. Similarly to our observations, other studies also reported a low prevalence of anti-S2 

IgG antibodies. For example, an Italian serological study found that the prevalence of anti-

S2 IgG antibodies in SARS-CoV-2 infected patients was 42% compared to 87% for anti-S1 

and 93% for anti-RBD [39]. Notably, the S2 subunit is more conserved among 

coronaviruses than S1 [40], while anti-S2 antibodies can harbor Fc-dependent effect 

function [41] and reveal pan-betacoronavirus neutralization potencies [42–44]. Therefore, 

their presence can enhance the host’s antiviral humoral immunity. In our study, the 

prevalence of anti-S2 Igg antibodies in individuals vaccinated against influenza was only 

slightly and statistically insignificantly higher compared to unvaccinated patients (by 

3.2%), while serum concentrations in both groups were similar. However, in the former 

subset of subjects, the anti-S2 titers were positively correlated with those of anti-RBD. 

Although the exact nature of this relationship remains unclear, it may suggest that 

vaccination against influenza could enhance the simultaneous recognition of S2 and RBD 

in some individuals. 

We also found that influenza vaccination was not associated with a more frequent 

presence or higher serum levels of anti-E IgG antibodies. Moreover, these antibodies were 

very rare in the studied cohort, and their concentration was significantly lower than that 

of anti-N and anti-RBD. Other serological research also observed a very low or zero 

prevalence of anti-E IgG antibodies [20,45]. The envelope protein is the smallest structural 

protein of SARS-CoV-2 (length 75 amino acids) and has a low protrusion of its 

ectodomains that could be recognized as epitopes [35,46]. Although it is abundantly 

expressed inside the infected cell, only a small portion is incorporated into the virion 

envelope [47,48]. 

Our study has some limitations. Firstly, serum samples were collected before the 

emergence of SARS-CoV-2 variants of concern, such as Alpha, Delta, and Omicron, which 

may differ in clinical severity and antigenicity [17,49]. Secondly, due to the unavailability 

of data, the study did not include some patient characteristics, which may also influence 

humoral responses, e.g., body mass index, specific comorbidities, or the use of 

medications (prior to and during the SARS-CoV-2 infection). However, one should note 

that the studied individuals underwent mild COVID-19 and did not require 

hospitalization. Thus, it is unlikely they were ordered any specific anti-SARS-CoV-2 

treatment that could affect humoral responses (e.g., glucocorticoid), as such treatment was 

not recommended at the time of our study (September–December 2020), while specific 

anti-SARS-CoV-2 medications were not available [50,51]. Further research is required to 

understand whether influenza vaccination could be associated with modified humoral 

response in asymptomatic and severe SARS-CoV-2 infections. Moreover, it is unknown 

whether influenza vaccination could also be associated with the response of other 

immunoglobulin classes that play an important role in SARS-CoV-2 infection, i.e., IgM 

and IgA [52]. The potential association between repeated influenza vaccination with 

humoral responses in COVID-19 also remains to be investigated since some data show 

that it may blunt immune reactions and lead to a decline in the effectiveness of influenza 

vaccines (although this phenomenon remains controversial, while the underlying 

mechanism is not clear) [53,54]. One should also bear in mind that our study did not 
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investigate the function of anti-SARS-CoV-2 antibodies. Therefore, whether higher 

antibody concentrations found for influenza-vaccinated individuals would translate into 

better virus neutralization requires further research. However, it was demonstrated that 

the presence of antibodies, such as IgG anti-N, the prevalence of which was higher in 

individuals vaccinated against influenza, was associated with a substantially reduced risk 

of reinfection [55,56]. Last but not least, adaptive cellular immunity that underpins 

protection against severe disease [57] was not a subject of this study. 

5. Conclusions 

This study showed better anti-N and anti-RBD antibody response to SARS-CoV-2 

infection in individuals vaccinated against seasonal influenza than in those who did not 

receive such vaccination. Further research is required to understand the mechanisms 

underlying this phenomenon. Nevertheless, the results add to accumulating evidence on 

the broadly beneficial effects of influenza vaccination in COVID-19. 
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